Vaginal Lactobacillus microbiota of healthy women in the late first trimester of pregnancy

H Kiss,a B Kögler,b L Petricevic,a I Sauerzapf,b S Klayraung,c K Domig,b H Viernstein,c W Kneifelb

a Department of Obstetrics and Gynecology, Medical University and Medical School of Vienna, Vienna, Austria b Division of Food Microbiology and Hygiene, Department of Food Sciences and Technology, University of Natural Resources and Applied Life Sciences, Vienna, Austria c Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria

Correspondence: Dr H Kiss, Medical University of Vienna, Department of Obstetrics and Gynaecology, AKH-Wien, Währinger Guertel 18–20, A-1090 Vienna, Austria. Email herbert.kiss@meduniwien.ac.at

Accepted 19 March 2007. Published Online Early 18 September 2007.

Objective This study was undertaken to characterise the dominant species of Lactobacillus colonising the vagina of healthy pregnant women, to examine some of their phenotypic and genotypic properties, and to gain a better understanding of the potential role of species, which might be associated with infection-free status.

Design A prospective descriptive cohort study.

Setting Department of Obstetrics and Gynaecology, Medical University of Vienna and Medical School, Vienna, Austria.

Sample A total of 200 women in the late first trimester of pregnancy without clinical signs of vaginal infection were included in the study. Of these, 126 women were found to have a normal vaginal flora based on Gram stain.

Methods Culture probes from those 126 women were further processed for identification of Lactobacillus species. Overall, 168 colonies from 84 women were identified as belonging to the Lactobacillus genus. Based on the combined results of microbiological methods and genus-specific, multiplex, and species-specific polymerase chain reaction, lactobacilli were recovered from 72 women.

Main outcome measures Identification of Lactobacillus species of the vaginal flora of healthy pregnant women.

Results The most frequently occurring species were Lactobacillus crispatus and Lactobacillus gasseri, followed by Lactobacillus jensenii and Lactobacillus rhamnosus.

Conclusions Our results may have implications on the composition and on the use of Lactobacillus preparations for the prevention of recurrent vaginal infection.

Keywords Identification, Lactobacillus, pregnancy, vagina.

Introduction

The healthy human vagina is dominated by a variety of Lactobacillus species, which play an essential role in protecting women from genital infection. Because vaginal infection is an important mechanism of disease responsible for preterm birth,1 maintaining the natural, healthy balance of the Lactobacillus flora in the vagina is particularly important during pregnancy. A deficiency in lactobacilli can upset the microbial balance in the vagina, frequently resulting in the syndrome of bacterial vaginosis,2,3 which may be associated with a quantitative and qualitative shift from normally occurring lactobacilli to a mixed flora dominated by anaerobic bacteria.4 According to Nugent et al.,5 bacterial vaginosis is characterised by a complete loss of lactobacilli and by a concomitant increase in Gram-variable and Gram-negative rods, primary among them is Gardnerella vaginalis, as well as Bacteroides, Prevotella, and Mobiluncus species.2,3 However, loss of vaginal lactobacilli also leaves nonpregnant women susceptible to infection which may result in endometritis or even pelvic inflammatory disease.6,7

Several species of Lactobacillus have been described to populate the vagina to varying degrees. They differ in their ability to grow and to produce either lactic acid or hydrogen peroxide.8 Some of the species identified so far include Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus jensenii, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus vaginalis, and Lactobacillus salivarius. In the most recent reported study on the vaginal Lactobacillus flora, Vásquez et al.9 found that the vaginal flora of most participants was dominated by a single Lactobacillus species, with the presence of other species
showing wide interindividual variability. The most frequently occurring species were *Lactobacillus crispatus*, *Lactobacillus gasseri*, *Lactobacillus iners*, and *L. jensenii*. In another study by Reid et al.,10 the *Lactobacillus* species recovered most commonly were *L. jensenii*, *L. acidophilus*, *L. casei*, and *L. gasseri*. Evidence suggests that there is considerable geographical variation in the composition of the normal *Lactobacillus* microbiota in the vagina.

The present study was undertaken to characterise the dominant species of *Lactobacillus* colonising the vagina of healthy pregnant women, to examine some of their phenotypic and genotypic properties, and to gain a better understanding of the potential role of certain species, which might be associated with infection-free status.

Materials and methods

This study was performed with the approval of the Ethics Committee of the Medical University of Vienna. Pregnant women between 11 + 0 and 14 + 0 weeks of gestation scheduled to give birth at the Department of Obstetrics and Gynecology, Medical University of Vienna, were included in the study after informed consent had been obtained. To be eligible, women had to be free of subjective complaints, vaginal bleeding, and clinical signs of vaginal infection, and they had to have a microscopically diagnosed normal vaginal flora. In addition to the routine antenatal examination, which includes infection screening with a simple vaginal smear, vaginal secretions for cultures of lactobacilli were obtained with a sterile swab. Smears for infection screening were transferred to the Microbiology Laboratory of the Department of Obstetrics and Gynecology. All preparations were Gram stained and evaluated by the Nugent scoring system.5

Culture probes from women with a vaginal flora classified as normal (Nugent score 0–3) and without any evidence of *Candida* colonisation (spores and hyphae) were transferred to transport medium and sent to the University of Natural Resources and Applied Life Sciences, Vienna, for further processing and identification of *Lactobacillus* species by phenotypic and genotypic methods. An overview of analytical methods is shown in Figure 1.

Vaginal swabs were removed from the transport medium and streaked onto MRS agar (Merck, Darmstadt, Germany) for identification of lactobacilli. For characterisation of the accompanying microflora, the same swab samples were used to inoculate *Gardnerella* agar (bioMérieux, Marcy l’Etoile, France), Chromocult Coliform agar (Merck), MacConkey agar (Merck), and Schaedler KV agar with 5% (v/v) sheep blood (BD Diagnostics, Sparks, MD, USA) for total *Enterobacteriaceae*, BBL CHROMagar™ Candida (BD Diagnostics) and YGC agar (Merck) for the isolation of yeasts, and Columbia agar with 5% sheep blood (BD Diagnostics) for the cultivation of fastidious microorganisms. MRS and Schaedler KV agar plates were incubated under anaerobic conditions for 48 hours at 37°C. YGC and CHROMagar Candida plates were cultured for a minimum of 5 days at...

![Figure 1. Flow chart of the isolation of preparations.](image-url)
25°C. The remaining plates were incubated aerobically for 24–48 hours at 37°C, except for *Gardnerella* agar, which was incubated in an anaerobic jar under microaerophilic atmosphere.

All colonies produced on agar plates underwent macroscopic examination and were then subjected to decontamination, with the exception of bacterial isolates harvested from MRS agar. These isolates were further identified based on Gram stains and assessment of colonic morphology. Isolates were excluded if presumptive lactobacilli were not culturable on MRS agar or not verifiable by Gram stain. Identified lactobacilli colonies were further characterised to the genus level by polymerase chain reaction (PCR).

For the DNA studies, each *Lactobacillus* isolate was pre-grown in MRS broth incubated under anaerobic conditions for 24 hours at 37°C; 1.5 ml of this bacterial culture were centrifuged (5415 R; Eppendorf, Hamburg, Germany) for 7 minutes at 4°C (5900 g) . The pellet was resuspended in 900 μl sterile sodium chloride solution (0.9%), blended, and again centrifuged. The supernatant was discarded, and the washing step was repeated. The pellet was washed using 900 μl of sterile ethylenediamine tetraacetic acid (50 mM, pH 8) and then stored at –20°C. The Genomic DNA Purification Kit (Genta Systems, Minneapolis, MN, USA) was used to obtain DNA samples according to the manufacturer’s protocol.

In the first PCR assay, isolates were identified to the genus level using the primers LbLMA1-rev and R16-1 according to Dubernet et al. The reaction mixture (total volume 25 μl) contained 1 μl of each primer (10 mM), 10× PCR buffer (Finnzymes, Espoo, Finland), deoxyribonucleotide triphosphate (dNTP)-Mix (10 mM) (Roth, Karlsruhe, Germany), DynaZyme (2 U/μl) (Finnzymes), and 0.5 μl bacterial DNA. Amplification was carried out in a Mastercycler gradient (Eppendorf) with the following temperature programme: initial denaturation at 94°C for 4 minutes; 35 cycles consisting of denaturation at 94°C for 1 minutes, annealing temperature at 55°C for 1 minutes including time increment of 2 seconds, extension at 72°C for 1 minutes, and a final extension step at 72°C for 8 minutes. The PCR products were visualised by agarose gel electrophoresis and photographed under ultraviolet transillumination.

Colonies identified as belonging to the genus *Lactobacillus* by means of PCR and all type strains were then assessed by multiplex PCR as described by Song et al. PCR-G was used for grouping the lactobacilli with the group-specific primers Lac-2, Ldcl-7, LU-5, LU-3, and LU-1, followed by PCR using species-specific primers for identification at the species level. Primers Ljen-3, Laci-1, and 23-10C were used for the identification of *L. jensenii* and *L. acidophilus*. Primers Lcri-3, Lcer-2, Lgas-3, and Lgas-2 were used for the identification of *L. crispatus* and *L. gasseri*. Primers LU-5, Lpar-4, and Rha II were applied for the detection of *Lactobacillus paracasei* and *Lactobacillus rhamnosus*. PCR with the primers Lsal-1, Lsal-2, Reu-1, Reu-4, Lpla-2, Lpla-3, Lfer-3, and Lfer-4 was performed to identify *L. salivarius*, *Lactobacillus reuteri*, *L. plantarum*, and *L. fermentum*. Additionally, the primer pair ‘casei’ and ‘Y2’ were used for identifying *L. casei* according to Ward et al.

Randomly amplified polymorphic DNA (RAPD) analysis was performed with the predominant *Lactobacillus* species found in this study. DNA samples were used from previous PCR amplifications. Seven different RAPD primers as described by Daffonchio et al., Andersson et al., Klein et al., Cocconcelli et al., and Johansson et al., as well as the Pharmacia Primer-Set (Pharmacia Biotech, Uppsala, Sweden) were used. The PCR mixture contained 2 μl of RAPD primer (12.5 pmol/μl), 10× PCR buffer (Finnzymes), dNTP-Mix (10 mM) (Roth), DynaZyme (2 U/μl) (Finnzymes), and 0.5 μl of DNA solution. RAPD-PCR was performed in a Mastercycler gradient (Eppendorf) using the following temperature profile: an initial denaturation step at 95°C for 5 minutes, followed by 45 cycles (1 minutes at 95°C, 1 minutes at 36°C, and 2 minutes at 72°C) and the final step at 72°C for 10 minutes. The PCR products were analysed on a 2% agarose gel and visualised by ultraviolet transillumination.

Results

Between January and April 2005, a total of 200 pregnant women were included in this study. The study population was between 18 and 35 years of age, with 98% of women of Caucasian origin. A total of 126 women were found to have a normal vaginal flora according to Nugent and to be free of *Candida* colonisation. Isolates from 38 women were excluded because presumptive lactobacilli were not culturable on MRS agar or not verifiable by Gram stain, so that a total of 180 colonies from 88 women remained for further characterisation by genus-specific PCR.

In the first PCR assay, 168 colonies from 84 women were identified as belonging to the genus *Lactobacillus*. The next...
step, applying combined results of microbiological methods, genus-specific PCR, and multiplex PCR Figure 2, showed that lactobacilli were recovered from 72/126 (57%) women. A flow chart of the isolation of preparations is shown in Figure 1.

Of the 72 women with lactobacilli identified by species-specific PCR, 19 (26.4%) women harbourd only L. gasseri and 17 (23.6%) women were colonised with only L. crispatus. In three (4.2%) women, both of these species were found simultaneously. Overall, 10 of the 72 women harbourd at least 2 different Lactobacillus species simultaneously. Detailed results are presented in Table 1.

In the 126 Lactobacillus colonies from 72 women, 8 different species of lactobacilli were detected and found to dominate the vaginal flora. Of these, L. crispatus and L. gasseri were the most frequent, identified in 20% and 18% of the 126 Lactobacillus colonies. L. acidophilus, L. plantarum, and L. salivarius were not recovered from any of the colonies. Detailed results are summarised in Table 2. Samples of results are shown in Figure 3.

Although a thorough documentation of all species detected in the vaginal swabs was not within the scope of this study, bacterial species other than lactic acid bacteria were detected by selective culture methods, macroscopic and microscopic identification, and Gram staining. The results of the vaginal flora isolated from 126 pregnant women are summarised in Table 2. Lactobacillus constituted the predominant flora. There were 40/126 women (31%) mainly colonised by species other than lactobacilli, and 23/126 women (18%) hosted both lactobacilli and Gram-negative rods. Other microorganisms, such as coliforms, Gardnerella species, and yeasts, exhibited diminished population densities when lactobacilli were found to be predominant. Escherichia coli was even less likely to be recovered from women harbouring L. crispatus or L. gasseri.

Candida albicans was isolated from 12 women. There was no significant correlation between the presence or absence of lactobacilli and the growth of C. albicans.

The predominant Lactobacillus species identified by species-specific PCR, namely L. crispatus, L. gasseri, and L. jensenii, were used to generate DNA fingerprints. Samples of women colonised with more than one colony of the same Lactobacillus species were further investigated by RAPD-PCR. For L. crispatus, 20 samples from 9 women were investigated. The RAPD-PCR results showed that most of the samples within one woman were closely related. Identical bands were found in only one woman. The 20 samples generated 3 different RAPD types Figure 4. For L. gasseri, 23 colonies from 9

Table 1. Distribution of Lactobacillus species in the 72 women with lactobacilli identified by species-specific PCR

<table>
<thead>
<tr>
<th>Lactobacillus species combinations</th>
<th>Women with lactobacilli, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. gasseri</td>
<td>19 (26.4)</td>
</tr>
<tr>
<td>L. crispatus</td>
<td>17 (23.6)</td>
</tr>
<tr>
<td>L. jensenii</td>
<td>14 (19.4)</td>
</tr>
<tr>
<td>L. rhamnosus</td>
<td>7 (9.7)</td>
</tr>
<tr>
<td>L. crispatus and L. gasseri</td>
<td>3 (4.2)</td>
</tr>
<tr>
<td>L. crispatus and L. rhamnosus</td>
<td>2 (2.7)</td>
</tr>
<tr>
<td>L. rhamnosus and L. jensenii</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>L. rhamnosus and L. gasseri</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>Other lactobacilli or lactobacilli combinations</td>
<td>8 (11.2)</td>
</tr>
<tr>
<td>L. crispatus and L. fermentum</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>L. crispatus and L. reuteri</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>L. crispatus and L. casei</td>
<td>1 (1.4)</td>
</tr>
</tbody>
</table>

Table 2. Overview of vaginal isolates derived from culture samples

<table>
<thead>
<tr>
<th>Lactobacillus species</th>
<th>Women (n = 126) colonised with Lactobacillus species, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. gasseri</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>L. crispatus</td>
<td>25 (19.8)</td>
</tr>
<tr>
<td>L. gasseri</td>
<td>23 (18.2)</td>
</tr>
<tr>
<td>L. jensenii</td>
<td>15 (11.9)</td>
</tr>
<tr>
<td>L. rhamnosus</td>
<td>10 (7.9)</td>
</tr>
<tr>
<td>L. reuteri</td>
<td>4 (3.2)</td>
</tr>
<tr>
<td>L. fermentum</td>
<td>2 (1.6)</td>
</tr>
<tr>
<td>L. casei</td>
<td>1 (0.8)</td>
</tr>
<tr>
<td>L. paracasei</td>
<td>1 (0.8)</td>
</tr>
</tbody>
</table>

Of the 72 women with lactobacilli identified by species-specific PCR, 19 (26.4%) women harbourd only L. gasseri and 17 (23.6%) women were colonised with only L. crispatus. In three (4.2%) women, both of these species were found simultaneously. Overall, 10 of the 72 women harbourd at least 2 different Lactobacillus species simultaneously. Detailed results are presented in Table 1.

In the 126 Lactobacillus colonies from 72 women, 8 different species of lactobacilli were detected and found to dominate the vaginal flora. Of these, L. crispatus and L. gasseri were the most frequent, identified in 20% and 18% of the 126 Lactobacillus colonies. L. acidophilus, L. plantarum, and L. salivarius were not recovered from any of the colonies. Detailed results are summarised in Table 2. Samples of results are shown in Figure 3.

Although a thorough documentation of all species detected in the vaginal swabs was not within the scope of this study, bacterial species other than lactic acid bacteria were detected by selective culture methods, macroscopic and microscopic identification, and Gram staining. The results of the vaginal flora isolated from 126 pregnant women are summarised in Table 2. Lactobacillus constituted the predominant flora. There were 40/126 women (31%) mainly colonised by species other than lactobacilli, and 23/126 women (18%) hosted both lactobacilli and Gram-negative rods. Other microorganisms, such as coliforms, Gardnerella species, and yeasts, exhibited diminished population densities when lactobacilli were found to be predominant. Escherichia coli was even less likely to be recovered from women harbouring L. crispatus or L. gasseri.

Candida albicans was isolated from 12 women. There was no significant correlation between the presence or absence of lactobacilli and the growth of C. albicans.

The predominant Lactobacillus species identified by species-specific PCR, namely L. crispatus, L. gasseri, and L. jensenii, were used to generate DNA fingerprints. Samples of women colonised with more than one colony of the same Lactobacillus species were further investigated by RAPD-PCR. For L. crispatus, 20 samples from 9 women were investigated. The RAPD-PCR results showed that most of the samples within one woman were closely related. Identical bands were found in only one woman. The 20 samples generated 3 different RAPD types Figure 4. For L. gasseri, 23 colonies from 9

Figure 3. Frequency of detected lactobacilli.

<table>
<thead>
<tr>
<th>Lactobacillus species</th>
<th>Women (n = 126) colonised with other vaginal microbes, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliforms</td>
<td>23 (18.2)</td>
</tr>
<tr>
<td>E. coli</td>
<td>22 (17.4)</td>
</tr>
<tr>
<td>Gardnerella species</td>
<td>13 (10.3)</td>
</tr>
<tr>
<td>Yeast (not further specified)</td>
<td>40 (31.7)</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>12 (9.5)</td>
</tr>
<tr>
<td>Candida krusei</td>
<td>22 (17.4)</td>
</tr>
</tbody>
</table>

aSome women were simultaneously colonised with more than one species.
women were investigated. The majority of the RAPD-PCR patterns within a single subject were different but had high similarity. Only two women showed identical bands. In the 23 colonies, three different RAPD types of this species were found. Similar results were obtained by the RAPD analysis of L. jensenii (19 samples from 8 women). The RAPD-PCR fingerprints within one woman differed slightly but indicated a close correlation. In the 19 samples, a maximum of 3 RAPD types was detected.

Discussion

For sometime, the flora of healthy women of childbearing age was believed to be dominated by L. acidophilus and L. fermentum, followed by L. brevis, L. jensenii, L. casei with all subgroups, and other species. More recently, molecular methods have shown L. crispatus, L. jensenii, and L. iners to be the most common isolates. In our study, L. crispatus and L. gasseri were the most frequently occurring species in the vaginas of pregnant women, followed by L. jensenii and L. rhamnosus. More specifically, the vaginal flora of all 72 participants in whom lactobacilli were culturable was either dominated by a single or by a combination of two Lactobacillus species. In contrast to results reported previously, L. acidophilus was underrepresented in our study. However, this is in agreement with results by Vásquez et al. and Antonio et al., who found L. jensenii, L. crispatus, and L. gasseri to be the predominant Lactobacillus species in the vagina.

There are several reasons that may have led to the contradictory data available on the vaginal Lactobacillus flora as determined in different studies. Factors such as the host’s state of health, pregnancy, age, or geographical variations may all influence the vaginal flora. Most importantly, however, differences in the methodology used and the lack of reliable identification methods obviously constitute a major problem in characterising the vaginal Lactobacillus microflora. The identification of vaginal lactobacilli based on phenotypic methods comprises sugar fermentation patterns and other biochemical tests and is therefore of limited accuracy and reliability. These tests sometimes cannot differentiate between closely related species. In this study, multiplex and species-specific PCR were performed for an in-depth identification of the strains. Additionally, RAPD analysis was used to generate DNA fingerprints for the three predominant Lactobacillus species. Results obtained with species-specific PCR are in accordance with those of Vásquez et al., indicating that L. crispatus, L. gasseri, and L. jensenii can be regarded as the predominant species in the vagina. The RAPD fingerprints of the selected Lactobacillus isolates clearly indicated the high homology and close relatedness within one individual, as well as within the species. The majority of the RAPD patterns were practically identical. No more than three different RAPD types per species were detected. This is in general agreement with former observations by Vásquez et al., who applied RAPD analysis, temporal temperature gradient gel electrophoresis, and multiplex PCR for the identification of the vaginal Lactobacillus flora. Antonio et al. also identified these species based on whole-chromosomal DNA probes. Thus, the implementation of genotypic methods constitutes a convenient way for the classification and species differentiation of vaginal lactobacilli.

Lactobacilli were detected in merely 84 (67%) of the 126 women whose samples were submitted for characterisation of the vaginal flora (Figure 1). This observation led us to assume that a certain proportion of lactobacilli may be viable but not culturable under certain conditions. It may well be that the samples in which Lactobacillus cultivation failed exhibit a similar distribution pattern of Lactobacillus species, which may be detectable by indirect methods. This particular microbial population will be the subject of another study.

Our results document the frequency distribution of different Lactobacillus species and strains, as well as combinations thereof. Because our population consisted of healthy pregnant women in the first trimester of pregnancy, it is likely that the distribution of lactobacilli we found corresponds to that of the general nonpregnant population. In terms of clinical practice, our findings may have an impact both on the substitution therapy with lactobacilli and on the diagnosis of bacterial vaginosis.

A particular feature of bacterial vaginosis is the reduction or absence of lactobacilli in the vaginal flora and an overgrowth of anaerobic and facultative anaerobic organisms. Antibiotic therapy, even though reducing the concentration of the bacteria that cause the symptoms of bacterial vaginosis, also targets the beneficial lactobacilli, further reducing the already depleted Lactobacillus flora. Our findings imply that substitution of either L. crispatus and L. gasseri or L. jensenii and L. rhamnosus may be more effective at restoring the normal vaginal Lactobacillus flora and avoiding relapse of infection, calling into question...
the value of vaginal therapeutics containing other species. Probiotic supplements have been proposed as alternative modalities for the maintenance and restoration of a healthy vaginal flora. In this context, our findings may well provide pointers to the composition of future probiotic products specifically directed to women’s health.

References